

ELISA Data Analysis Checklist

A one page reference for consistent results across plates, dates, and operators.

Before you analyze

- Confirm assay type (qualitative, semi quantitative, quantitative) and format (sandwich or competitive).
- Confirm read settings (primary wavelength, reference wavelength if used) and the timing window in the protocol.
- Confirm standards are prepared correctly (dilution series, units, matrix, replicate wells).
- Export the raw plate file and save an untouched copy with date, plate ID, and operator initials.

Raw data and background

- Review the plate map and confirm sample IDs match well positions.
- If a reference wavelength is specified, apply it consistently (for example 450 minus 570).
- Identify background wells (blank or zero standard) and subtract the background value from all wells.
- Scan for obvious artifacts (bubbles, fingerprints, splashed wells, reading errors) and flag affected wells.

Standard curve fit

- Choose an appropriate curve model for your assay (4PL is common, 5PL if clearly asymmetric).
- Verify standards are monotonic and bracket the expected sample range.
- Check standard replicates and remove a point only with a documented reason (not to force a better curve).
- Review fit quality using residuals and back calculated standards based on your lab acceptance criteria.

Dilution and sample handling factors

- Apply dilution factors after interpolation (example 1 to 10 dilution means multiply by 10).
- Document any additional processing factors (concentration steps, volume changes, unit conversions).
- If matrix effects are suspected, confirm that sample diluent and standards match the intended matrix as closely as possible.

Replicate quality checks

- Calculate mean, standard deviation, and coefficient of variation (CV) for samples and standards.
- Set a CV target that matches the study purpose. Many research workflows start at 20 percent or lower, tighter for high confidence work.
- If duplicates disagree, investigate before averaging (pipetting, wash performance, well artifacts, edge effects).

Controls and plate effects

- Verify negative controls remain near background and positive controls fall within the expected range.
- Check for row or column trends and edge effects, especially on outer wells.
- Confirm incubation conditions were stable (time, temperature, plate seal) and washing was consistent.
- If running multiple plates, include an inter plate control sample when possible.

Interpolate unknowns

- Interpolate concentrations only within the quantifiable range of the standard curve.
- Flag samples above range and plan a rerun at a higher dilution.
- Flag samples near background and treat them as below quantifiable range unless your protocol defines a valid approach.
- Report units clearly and keep them consistent across plates and studies.

Normalization, statistics, and reporting

- Normalize only when it supports the study design (for example inter plate control normalization across runs).
- Choose statistical tests that match the design (paired vs unpaired, number of groups, distribution assumptions).
- Record critical metadata with the results (kit lot, plate reader model, analysis software, curve model, analyst).
- Keep a clear audit trail from raw ODs to final concentrations.

Notes

Use with your kit protocol. Acceptance criteria can vary by assay format and intended use.
Aviva Systems Biology. Technical Resources: avivasysbio.com/technical-resources/elisa